Практическое занятие №8.

Задачи для самостоятельной работы студента

Решение задач по темам: Полное исследование функции.

1. Провести полное исследование указанных функций и построить их графики.

a)
$$y = \left(\frac{x+2}{x-1}\right)^2$$
; b) $y = \frac{3}{x(4-x)}$; c) $y = \frac{x}{1-x^2}$.

2. Найти наименьшее и наибольшее значения функции у на отрезке

а)
$$y = x + 3\sqrt[3]{x}$$
 на отрезке $[-1;1]$

b)
$$y = x - 4\sqrt{x+2} + 8$$
 на отрезке [-1, 7]

c)
$$y = \frac{x}{4} + \frac{4}{x}$$
 на отрезке [1; 6].

ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ

Задачи из Лекции №8 (ФИТ)

Пример 1. Исследовать на экстремум функцию $y = x^3 - 9x^2 + 24x$

<u>Пример 2.</u> Найти наибольшее значение непрерывной функции $y = x^3 - 3x^2 - 45x + 225$ на отрезке [0;6].

Пример 3. Найти точки экстремума и точки перегиба графика функции $y = 3x^4 - 8x^3 + 6x^2 + 12$

Пример 4. Найти асимптоты для функции $f(x) = \frac{x^3 - 6x^2 + 3}{2x^2 + 5}$.

Пример 5. Построить график функции $f(x) = \frac{x^2 + 1}{x - 1}$.

Пример 6. Провести полное исследование и построить график функции $f(x) = (x+2) e^{\frac{1}{x}}$.

ЗАДАЧИ С РЕШЕНИЯМИ

Пример:

1. Построить график функции $y = \arcsin \frac{2x}{1+x^2}$.

 Δ 1°. Функция определена при тех значениях x, для которых, как следует из определения арксинуса, выполнено неравенство $\left|\frac{2x}{1+x^2}\right| \leqslant 1$. Оно равносильно неравенству $(1-|x|)^2 \geqslant 0$. Последнее верно для любых вещественных x. Итак, D(f)=R. Функция $\frac{2x}{1+x^2}$ непрерывна в любой точке (как частное двух непрерывных функций). Поэтому функция $\frac{2x}{1+x^2}$ также непрерывна в любой точке (как суперпозиция непрерывных функций), и, следовательно, график функции не имеет вертикальных асимптот. Для нахождения наклонной асимптоты при $x \to \infty$ вычислим следующие пределы:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \arcsin \frac{2x}{1+x^2} = 0,$$
$$\lim_{x \to +\infty} [f(x) - kx] = \lim_{x \to +\infty} \arcsin \frac{2x}{1+x^2} = \arcsin 0 = 0.$$

Отсюда следует, что прямая y=0 является асимптотой при $x \to +\infty$ (ее правильнее назвать горизонтальной, а не наклонной). Аналогично можно установить, что та же прямая y=0 является асимптотой при $x \to -\infty$.

- 2°. Очевидно, что функция непериодическая и является нечетной. Поэтому вместо всей области определения достаточно рассмотреть полупрямую $[0, +\infty)$.
- 3° Имеем y=0 при x=0 Других нулей, а также точек разрыва функция не имеет. На полупрямой $(0, +\infty)$ функция является положительной
- 4° Найдем точки возможного экстремума на полупрямой $[0, +\infty)$ Вычислим производную функцию при $x \neq 1$

$$y' = \frac{1}{\sqrt{1 - \frac{4x^2}{(1+x^2)^2}}} \frac{2(1+x^2) - 4x^2}{(1+x^2)^2} = \frac{1+x^2}{|1-x^2|} \frac{2(1-x^2)}{(1+x^2)^2} = \frac{2\operatorname{sgn}(1-x^2)}{1+x^2}$$

Отсюда видно, что производная не обращается в нуль ни в одной точке Так как y'(1+0) = -1, y'(1-0) = 1, то в точке x = 1 производная не существует Знак производной при переходе через точку x=1меняется с плюса на минус Поэтому в точке x=1 функция имеет локальный максимум, причем $y(1) = \arcsin 1 = \pi/2$ Отметим, что в точке x=1 функция непрерывна, а ее производная имеет разрыв I рода В таком случае соответствующая точка графика (в данном примере точка $(1, \pi/2)$) называется угловой точкой Промежутки монотонности функции определяются знаком производной y'>0 при нотонности функции опроводна $0 \leqslant x < 1, \ y' < 0$ при x > 1 5° Так как вторая производная $y'' = \frac{-4x \, \mathrm{sgn} \, (1-x^2)}{(1+x^2)^2}, \qquad x \neq 1,$

$$y'' = \frac{-4x \operatorname{sgn}(1 - x^2)}{(1 + x^2)^2}, \qquad x \neq 1,$$

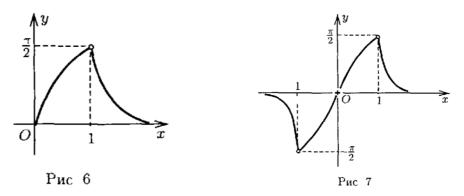
обращается в нуль лишь при x=0 и при переходе через точку x=0y'' меняет знак, то в точке (0,y(0))=(0,0) график функции имеет перегиб Направление выпуклости определяется знаком второй производной y'' < 0 при $0 \leqslant x < 1, \ y'' > 0$ при x > 1

Исследование функции закончено Перед тем как строить график, удобно изобразить на схеме результаты исследования, в частности, промежутки знакопостоянства функции, первой проиводной y' и второй производной y''

$$y = \frac{\text{Перегиб}}{0} + \frac{x}{0}$$
 $y' = \frac{1}{0} - \frac{1}{1} + x$
 $x' = \frac{1}{0} - \frac{1}{1} + x$

Теперь, считывая информацию со схемы, строим график функции на промежутке $[0, +\infty)$ На отрезке [0, 1] а) функция возрастает от значения y=0 при x=0 до значения $y=\pi/2$ при x=1,6) выпуклость направлена вверх Далее, на полупрямой $[1, +\infty)$ а) функция убывает, оставаясь положительной, б) выпуклость направлена вниз, в) при $x \to +\infty$ график приближается к асимптоте — оси Ox Отметим, что при переходе через точку x=1 изменяется направление выпуклости графика, но точка $(1, \pi/2)$ не является точкой перегиба — это угловая точка (рис 6)

Наконец, используя нечетность функции, достраиваем ее график на всей области определения (рис 7) 🛦



Пример:

Найти интервалы возрастания и убывания функции f(x) = $=x^3-6x^2+5.$

 Функция определена на всей числовой оси, а ее производная равна $f'(x) = 3x^2 - 12x = 3(x-2)(x+2)$. Функция f(x) возрастает тогда и только тогда, когда f'(x) > 0, т. е. (x-2)(x+2) > 0, откуда $x \in (-\infty; -2) \cup (2; +\infty)$. Аналогично, данная функция убывает в точности когда f'(x) < 0, т.е. (x-2)(x+2) < 0, откуда $x \in (-2; 2)$.

Таким образом, функция f(x) возрастает на интервалах $(-\infty; -2)$ и $(2; +\infty)$, а убывает на интервале (-2; 2).

Пример:

Найти интервалы выпуклости и точки перегиба функции $f(x) = \frac{1}{x^2 + 1}.$

Функция определена и дважды дифференцируема на всей действительной оси. Находим вторую производную:

$$f''(x) = \frac{6(x^2 - \frac{1}{3})}{(x^2 + 1)^3}.$$

Отсюда получим: функция выпукла вверх тогда и только тогда, когда f''<0, т.е. $x^2-\frac{1}{3}<0$, или $|x|<\frac{1}{\sqrt{3}}$. Функция выпукла вниз тогда и только тогда, когда $x^2-\frac{1}{3}>0$, т.е. $x\in\left(-\infty;-\frac{1}{\sqrt{3}}\right)\cup\left(\frac{1}{\sqrt{3}};+\infty\right)$. Таким образом, функция выпукла вверх на $\left(-\frac{1}{\sqrt{3}};\frac{1}{\sqrt{3}}\right)$,

выпукла вниз на $\left(-\infty; -\frac{1}{\sqrt{3}}\right)$ и на $\left(\frac{1}{\sqrt{3}}; +\infty\right)$. Откуда ясно,

что точки $x_1 = -\frac{1}{\sqrt{3}}$ и $x_2 = \frac{1}{\sqrt{3}}$ являются точками перегиба данной функции.

Пример:

Найти асимптоты графика функции $f(x) = \frac{x^2}{x-1}$.

 $igoplus \Phi$ ункция непрерывна всюду, кроме точки x=1, в которой она терпит разрыв второго рода, причем $\lim_{x \to 1-0} \frac{x^2}{x-1} = -\infty$,

 $\lim_{x \to 1+0} \frac{x^2}{x-1} = +\infty$. Отсюда следует, что прямая x=1 — вертикальная асимптота и других вертикальных асимптот нет.

Проверим, есть ли у графика функции наклонные асимптоты. Находим

$$k = \lim_{x \to +\infty} rac{f(x)}{x} = \lim_{x \to +\infty} rac{x}{x-1} = 1$$
, откуда $b = \lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} \left(rac{x^2}{x-1} - x
ight) = \lim_{x \to +\infty} rac{1}{x-1} = 0.$

Таким образом, прямая y=x — наклонная асимптота графика функции при $x\to +\infty$. Аналогично получим, что эта прямая является наклонной асимптотой и при $x\to -\infty$.

Поскольку угловой коэффициент k наклонной асимптоты не равен нулю, то график функции не имеет горизонтальных асимптот.

Пример:

Провести полное исследование функции $y = \frac{x^3}{4-x^2}$ и построить ее график.

Область определения D(f) функции — вся числовая ось, за исключением точек x = -2 и x = 2, т. е.

$$D(f) = (-\infty; -2) \cup (-2; 2) \cup (2; +\infty).$$

Функция непериодическая; исследуем ее на четность и нечетность:

 $f(-x) = \frac{(-x)^3}{4 - (-x)^2} = -\frac{x^3}{4 - x^2} = -f(x).$

Следовательно, данная функция нечетная и ее график симметричен относительно начала координат. Поэтому далее исследуем функцию только при $x \ge 0$.

Найдем точки пересечения графика с осями координат: с осью Oy график пересекается при x=0, откуда

$$y=f(0)=0,$$
 т. е. $M(0;0)$ — точка пересечения с осью $Oy;$ с осью Ox график пересекается, если $f(x)=0,$ т. е. $\frac{x^3}{4-x^2}=0,$ откуда $x=0.$ Таким образом, $M(0;0)$ — единственная точка пересечения графика с осями координат.

Находим интервалы знакопостоянства функции:

$$f(x) > 0 \iff \frac{x^3}{4 - x^2} > 0 \iff x(4 - x^2) > 0,$$

и так как мы рассматриваем только случай $x \geqslant 0$, то получаем 0 < x < 2.

Аналогично f(x) < 0 при x > 2. Далее,

$$\lim_{x \to 2-0} \frac{x^3}{4-x^2} = +\infty, \quad \lim_{x \to 2+0} \frac{x^3}{4-x^2} = -\infty,$$

т. е. прямая x=2 — вертикальная асимптота. Отсюда, в силу симметрии, следует, что прямая x=-2 — также вертикальная асимптота.

Найдем наклонные асимптоты:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2}{4 - x^2} = -1,$$

 $b=\lim_{x\to+\infty}(f(x)-kx)=\lim_{x\to+\infty}\left(\frac{x^3}{4-x^2}+x\right)=\lim_{x\to+\infty}\frac{4x}{4-x^2}=0,$ т. е. прямая y=-x — наклонная асимптота при $x\to+\infty$ (то же и при $x\to-\infty$). Горизонтальных асимптот график не имеет.

Найдем интервалы монотонности и экстремумы функции, исследуя первую производную:

$$f'(x) = \left(\frac{x^3}{4-x^2}\right)' = \frac{x^2(12-x^2)}{(4-x^2)^2} = \frac{x^2(2\sqrt{3}-x)(2\sqrt{3}+x)}{(4-x^2)^2}.$$

Отсюда видно, что при $x\geqslant 0$ (см. рис. 87) функция имеет максимум в точке $x=2\sqrt{3}$ (причем $f(2\sqrt{3})=-3\sqrt{3}\approx -5,2)$, возрастает на (0;2) и $(2;2\sqrt{3})$ и убывает на $(2\sqrt{3};+\infty)$.

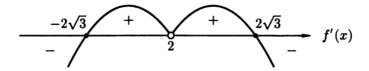


Рис. 87

Чтобы определить интервалы выпуклости и точки перегиба, вычислим вторую производную:

$$f''(x) = \frac{8x(12+x^2)}{(4-x^2)^3}.$$

Отсюда ясно, что при $x\geqslant 0$ функция выпукла вверх (т.е. f''<0) на $(2;+\infty)$ и выпукла вниз (т.е. f''>0) на (0;2), x=0 — точка перегиба.

Учитывая накопленную информацию, строим график функции при $x \ge 0$, а затем симметрично отражаем его относительно начала координат (рис. 88).

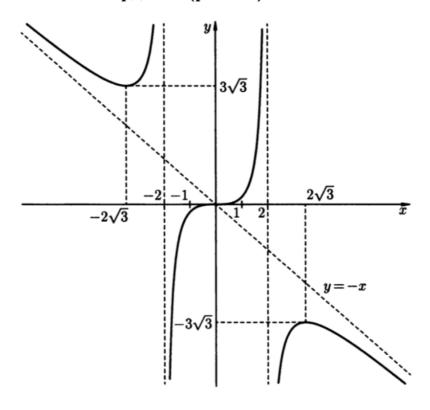


Рис. 88